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Abstract: The Camp Fire was one of California’s deadliest and most destructive wildfires, and its
widespread smoke threatened human health over a large area in Northern California in November
2018. To analyze the Camp Fire influence on air quality on a 200 km distant site in Berkeley, highly
time-resolved total carbon (TC), black carbon (BC), and organic carbon (OC) were measured using
the Carbonaceous Aerosol Speciation System (CASS, Aerosol Magee Scientific), comprising two
instruments, a Total Carbon Analyzer TCA08 in tandem with an Aethalometer AE33. During the
period when the air quality was affected by wildfire smoke, the BC concentrations increased four
times above the typical air pollution level presented in Berkeley before and after the event, and the
OC increased approximately ten times. High-time-resolution measurements allow us to study the
aging of OC and investigate how the characteristics of carbonaceous aerosols evolve over the course
of the fire event. A higher fraction of secondary carbonaceous aerosols was observed in the later
phase of the fire. At the same time, the amount of light-absorbing organic aerosol (brown carbon)
declined with time.

Keywords: black carbon; brown carbon; carbonaceous aerosols; wildfire; secondary organic aerosols

1. Introduction

In recent years, the frequency of extreme wildfire events and the total burned area
in California have increased due to climate-change-related temperature increases and
precipitation decreases [1,2]. Besides the material damage and potential risk to human
lives, the wildfires also emit an enormous amount of carbonaceous aerosols (CA), which
can be transported to a few hundred kilometers away from the wildfire location, affecting
the air quality and public health over a wider area [3,4]. Epidemiological and toxicological
studies indicate that CA may be relatively more toxic than other PM2.5 compounds, such as
soluble salts, due to their high potential to inflict oxidative stress [5,6]. On the other hand,
CA influence the Earth’s radiation budget directly through light absorption and scattering
or indirectly due to their role in cloud formation [7–9].

CA generally combine two chemically different species, black carbon (BC) and highly
variable organic aerosols (OA) [10]. BC is an inert fraction that strongly absorbs light. BC is
always a consequence of incomplete combustion and is emitted directly from sources as a
particle. On the contrary, OA can be primarily emitted as particles (primary OA-POA) or
formed in the atmosphere via the oxidation of gaseous precursors (secondary OA-SOA).
Brown carbon (BrC) is a fraction of OA that absorbs light. The light absorption by BrC
is usually enhanced near the ultraviolet part of the spectra [11,12]. The mass of carbon
atoms in CA and OA is called total carbon (TC) and organic carbon (OC), respectively.
Similarly, primary OC (POC) and secondary OC (SOC) represent the mass of carbon atoms
in POA and SOA. Docherty et al. [13] reported typical POA/POC and SOA/SOC ratios of
1.2 and 1.8, respectively, for the average situation in Los Angeles, California, unaffected
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by wildfires. During wildfires, the OA/OC ratio usually increases owing to the higher
oxidation state of biomass-burning-related (BB) aerosols. For example, Zhou et al. [14]
reported OA/OC values between 1.7 and 3.0 when wildfire plumes impacted the air, and
similarly, Zhang et al. [7] reported OA/OC ratios between 1.62 and 2.58.

CA emitted from wildfires are mostly organic [7,15]. Like other BB aerosols, fresh
wildfire emissions contain a high fraction of BrC [15]. Dark aging can enhance BrC ab-
sorption [15], while BrC absorption is decreased with aging during daylight owing to the
photobleaching of chromophores [16–18].

There are two major pathways of biomass-burning-related SOA formation: SOA
formation from either primarily emitted volatile organic compounds (VOCs) or dilution-
driven POA evaporation and subsequent SOA formation [19,20]. Amongst the VOCs, the
main contributors to SOA formation from wildfires are phenol, benzene, and catechol [21],
where gaseous catechol represents the intermediate phase of phenol oxidation to SOA.

Our study reports the extreme pollution of a large wildfire event characterized in
detail using high-time-resolution TC and BC measurements. With the TC–BC method, we
analyzed the influence of the Camp Fire smoke at a distant site in Berkeley in November
2018. A BC tracer and brown carbon models were used to characterize further the primary
and secondary OA and the increased light absorption on BrC. The highly time-resolved
measurements also offer to analyze the smoke aging.

2. Materials and Methods
2.1. Location and Measurements Setup

The Bay Area Air Quality Measurement District (BAAQMD) site in Berkeley (CA,
USA) is located near the Aquatic Park (Figure 1). Its micro-location is near the exit from a
10-lane highway (37.8648, −122.3028), so it is characterized as a traffic station. The Berkeley
site is located approximately 200 km away from the Camp Fire center.
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Figure 1. Location of measurement site in Berkeley and the approximate location where Camp Fire
started in Northern California, USA (a). The site is located near Aquatic Park (b), and it is located
near the exit of the 10-lane highway (c). (a,b) were plotted with python library basemap using ArcGis
WorldImagery, and (c) was taken from google maps street view.

In this study, we used the Carbonaceous Aerosol Speciation System (CASS, Aerosol
Magee Scientific, Ljubljana, Slovenia), comprising two instruments, a Total Carbon An-
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alyzer, model TCA08 [22], in tandem with an Aethalometer, model AE33 [23]. CASS
measured total carbon (TC) and black carbon (BC) with high time resolution. The difference
can be inferred as the organic carbon (OC):

OC(t) = TC(t) − BC(t) (1)

TCA08 used a simple thermal protocol: concentrations of TC were measured by the
rapid combustion of particles collected on a quartz filter. The sample was heated almost in-
stantaneously to 940 ◦C, at which the carbonaceous compounds were efficiently combusted
to CO2. The pulse of CO2 created during the combustion phase of the analysis was detected
as a large transient increase above the background CO2 level. TCA08 had two identical
parallel chambers to ensure continuous measurements without dead time. Wherein one
channel collected a sample, the other performed analysis of an already collected sample.
The limit of detection (LoD) was 0.3 µg/m3. TCA was operated at a 30 min resolution,
sampling the PM2.5 fraction at 16.7 L min−1.

The tandem Aethalometer measured the aerosol light absorption and corresponding
equivalent BC concentration at seven wavelengths (370, 470, 520, 590, 660, 880, and 950 nm)
with LoD equal to 0.03 µg/m3. The sample was collected on a glass fiber filter with a flow
rate of 5 L min−1 and a PM2.5 size-selective inlet. Light attenuation was measured at a
time resolution of 1 min. The Aethalometer used a ‘dual-spot’ methodology to correct the
filter-loading effect in real-time [23]. The absorption coefficient (babs) was calculated from
the attenuation coefficient (bATN) using a multiple-scattering parameter C:

babs(λ, t) =
bATN(λ, t)

C
(2)

The equivalent BC mass was calculated from babs using mass absorption cross section
(MAC):

BC(t) =
babs(880 nm, t)
MAC(880 nm)

(3)

In Equations (2) and (3), the manufacturer default values were used for C and MAC
(880 nm): 1.39 and 7.77 m2/g, respectively.

The advantages of using CASS compared to online and offline OC/EC analyzers
include high time resolution, no sampling dead time, online filter-loading effect compensa-
tion for BC measurements, and low maintenance [23]. As the thermal measurements were
performed without a fragile quartz sample oven, high-purity gases, and a catalyst, they are
suitable for field campaigns [22].

2.2. BC Tracer Model and Brown Carbon Model

To split OC into primary OC (POC) and secondary OC (SOC), we used the BC tracer
model [10,24]:

POC(t) =
(

OC
BC

)
prim

· BC(t)

SOC(t) = OC(t) − POC(t) = OC(t) −
(

OC
BC

)
prim

· BC(t)
(4)

where (OC/BC)prim is a time-independent ratio and is expected to be source-dependent.
To find the optimal (OC/BC)prim ratio, the minimum R-squared (MRS) [25,26] method was
used. Briefly, the hypothetical SOC(t) was first calculated for a wide range of hypothetical
(OC/BC)prim ratios (for ratios 0.1 to 15 in 0.1 steps). Then, the R-squared value (R2) between
hypothetical SOC(t) and BC(t) was calculated for every hypothetical (OC/BC)prim ratio,
and the optimal (OC/BC)prim ratio was chosen where the R2 was minimal. Because the
air quality was strongly influenced by the plume from the wildfire during the event and
by traffic emissions otherwise, two different (OC/BC)prim ratios were used in our study.
(OC/BC)prim equal to 1.1 was determined as an optimal value for subperiods before and
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after the Camp Fire event in November 2018, and (OC/BC)prim equal to 4.4 for the period
strongly influenced by the wildfire (Figure A1).

The wavelength-dependent optical absorption was split between BC and brown carbon
(BrC) using the two-component model [27–30]:

babs(λ, t) = bBC
abs(λ, t) + bBrC

abs (λ, t)

bBC
abs(λ, t) = bBC

abs(λ0, t)·
(

λ
λ0

)−AAEBC

bBrC
abs (λ, t) = bBrC

abs (λ0, t)·
(

λ
λ0

)−AAEBrC(t)
(5)

We assumed the absorption Ångström exponent of BC (AAEBC) had a constant value
of 1.15, as thoroughly discussed in a recent study from the Los Angeles basin [10]. Because
AAEBrC(t) was allowed to vary with time, the two-component model (Equation (5)) did
not have an analytical solution. To solve model (5), an assumption that BC was the only
light-absorbing carbonaceous component at 880 nm was considered [10,28,29,31]:

babs(880, t) = bBC
abs(880, t)

bBrC
abs (880, t) = 0

(6)

Using assumption (6), the optical absorption by BrC at a specific wavelength can be
calculated from model (5) as

bBrC
abs (λ, t) = babs(λ, t)− bBC

abs(λ, t) = babs(λ, t)− babs(880, t)·
(

λ

880

)−AAEBC

(7)

Spectral dependence of the absorption coefficient can be described by the bulk ab-
sorption Ångström exponent (AAE), which is calculated by fitting over all 7 wavelengths
(AAE7λ). Besides the fraction of BrC absorption at 370 nm, the spectral dependence of bBrC

abs
can be described by the AAEBrC, where bBrC

abs is fitted over 4 shortest wavelengths (370 nm
to 590 nm).

2.3. Uncertainties

The detailed evaluation of uncertainties for TC–BC measurements and applied models
was widely discussed in a recent paper [10]. Briefly, the uncertainty of TC concentrations
measured by TCA08 was estimated to be up to 10%, while the uncertainty for BC concentra-
tion measured using AE33 was estimated to be 25%, where the largest part of uncertainty
arose from the selected MACBC and C values. The uncertainty of the BC tracer model was
also estimated to be 25%, and the BrC model yielded a discrepancy of 5% in the absorption
coefficient of BrC at 370 nm.

2.4. Complementary Data

The smoke from Camp Fire extended over a broader area and affected air quality in
Berkeley and a considerable fraction of northern California. To analyze the spatial extent of
the Camp Fire on air quality in a broader area, the data from 4 publicly available databases
were added:

1. Satellite images by NASA Worldview [32];
2. Back trajectories by the HYSPLIT model [33];
3. Smoke maps by NOAA Hazard Mapping System [34];
4. PM2.5 by Purple Air [35].

Appendix A contains daily images of spatial plume distribution in Northern California
and calculated back trajectories from the Berkeley site between 7 and 21 November 2018
(Figures A2–A16). The back trajectories marking the path of air masses coming to the
Berkeley site were calculated every 3 h by the HYSPLIT model for the last 72 h [33]. The
GFS quarter-degree archive of meteorological data is used for the calculation.
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Ground-based daily-averaged PM2.5 concentrations were estimated by Purple Air
sensors (PASs). Owing to their low cost and, consequently, widespread use, PASs are
useful for spatially visualizing the extent of pollution. Regardless of different corrections
algorithms [36], the PAS biases could not be reduced entirely, and therefore, PASs were not
used for mass closure in our study.

3. Results and Discussion

Camp Fire started on 8 November 2018, at around 6:15 a.m., approximately 145 km
north of Sacramento, California. It was ignited by a faulty electric transmission line.
The plume reached the Berkeley site in the next 4 h (Figure A4). The heavy rain on
21 November completely extinguished the fire (Figure A17) and washed out the pollution
from the atmosphere. Figure 2 shows the time series of measured TC and BC (Figure 2a,b),
apportionment of primary and secondary OC (Figure 2c,d), and apportionment of optical
absorption to BC and BrC (Figure 2e,f).
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Figure 2. Time series of TC–BC measurements (a,b), CA apportionment (c,d), and absorption coeffi-
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Before and after the Camp Fire event in November 2018, it is possible to observe
the typical daily cycle of CA in Berkeley (Figure 2 and diurnal profiles in Figure A2),
comparable to the typical daily cycle from the Los Angeles basin [10]. BC represented
approximately 40% of TC. The highest fraction of OC, up to 80% of TC, was observed
during the nights (Figure 2b). During the day, primary CA (BC + POC) prevailed, and
during the night, SOC contributed up to 70% of TC (Figure 2d). Before and after the Camp
Fire event, the light absorption by BC strongly prevailed over BrC. BrC appeared only
during the nights (Figure 2f) and, on average, represented approximately a 5% fraction of
the light absorption at 370 nm in November 2018 (Figure 3e).
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Figure 3. The upper row compares median BC and OC concentrations between different phases in
November 2018 (a), where the bar height represents the median concentration and the numbers above
the graph indicate the relative change. The middle row contains typical fingerprints for phases before
and after Camp Fire event (b), during Fire Phase I (c), and during Fire Phase II (d). The median
wavelength-dependent optical absorption is presented at the bottom for phases before and after Camp
Fire event (e), during Fire Phase I (f), and during Fire Phase II (g). The pie charts in Figures (e–g)
contain the average split of optical absorption between BC and BrC at 370 nm for the respective phases.

The air quality significantly deteriorated when the wildfire plume reached Berkeley
(Figure 2a). We split this period into two phases: Fire Phase I and Fire Phase II (denoted
with vertical green lines in Figure 2). In Fire Phase I, the fire was active due to high
vegetation fuel loading, and this period can be characterized by the flaming phase of the
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fire. The high plume rise and strong winds allowed the plume to be transported over
long distances (Figures A4–A9). The smoldering and spot fires were more typical for Fire
Phase II. The initial plume was already dispersed, while the intake of fresh smoke was
lower for more distanced places such as the Berkeley site (Figures A10–A16). The air masses
were coming to the Berkeley site from the northeast direction most of the time when the fire
was active (back trajectories in Figures A4–A16). The daily averaged PM2.5 concentrations,
measured by Purple Air sensors, exceeded 200 µg/m3 in Berkeley and 300 µg/m3 in places
nearer the fire (Figures A3–A17).

In Fire Phase I, the median TC concentrations increased from 3.5 µg/m3 to 23.9 µg/m3

with a maximum hourly and 24 h average value of 73.8 µg/m3 and 37.1 µg/m3, respectively
(Figure 2a). In Fire Phase II, even higher TC concentrations were observed: 37.0 µg/m3,
102.9 µg/m3, and 75.0 µg/m3 for the median, hourly maximum, and maximum 24 h
average TC, respectively. During both fire phases, the 24 h average TC exceeded the WHO-
recommended PM2.5 daily limit of 15 µg/m3 [37] every day. In 7 of these 13 days, the
24 h average TC concentrations were two times higher than the limit. It is worth noting
that the TC concentration only represents the carbon content in carbonaceous aerosols. In
addition, the PM2.5 may be even higher due to other non-carbonaceous particles in the
aged wildfire plume. While the fractional increase in median BC concentrations against the
median BC value before and after the event was comparable in both fire phases (3.7 times
in Fire Phase I and 3.9 times in Fire Phase II—Figure 3a), the pattern of OC increase was
different. Compared to periods before and after the Camp Fire event, median OC increased
8.4 and 13.9 times in Fire Phases I and II, respectively (Figure 3a). This agrees with the
study of Zhang et al. [7], where they reported more than 10 times higher OA concentration
during the period affected by the wildfire than the background. Increase in the OC fraction
in Fire Phase II infers more OC was formed secondarily. We confirmed this with the BC
tracer model: during Fire Phase I, 63% of TC was POC (Figure 3c). Similarly, Palm et al. [19]
reported the dominant POA role during the fire’s starting phase. In Fire Phase II, the most
considerable fraction of TC was SOC (48%) (Figure 3d).

The fraction of the light absorbed by BrC increased significantly during the fire period
compared to the typical situation before and after the event (Figure 2e,f). The maximum
fraction of light absorbed by BrC at 370 nm was observed on 11 November when it reached
80% (Figure 2f). The median BC absorption coefficient at 370 nm was comparable between
both fire phases—82.9 Mm−1 and 87.4 Mm−1 in Fire Phases I and II, respectively. The
median BrC absorption coefficient at 370 nm decreased from 94.6 Mm−1 to 61.2 Mm−1 in
Fire Phase II (Figure 3f,g). This resulted in a lower fraction of light absorbed by BrC at
370 nm—it decreased from 60% in Fire Phase I to 44% in Fire Phase II (Figure 3f,g). The
decrease in BrC absorption is most probably connected to the photobleaching of BrC. The
net decrease in BrC absorption with aging due to photobleaching is also consistent with
other studies [15,17,18,38,39]. The lowest fraction of light absorbed by BrC was found
between 17 and 19 November, with less than a 20% share (Figure 2f). The lower smoke
intensity can also be seen in satellite images (Figures A14 and A15).

Figure 4 contains analyses of the AAE for bulk absorption (AAE7λ) and BrC (AAEBrC).
The mean AAE7λ was equal to 1.15 before and after the air quality was affected by Camp
Fire smoke (Figure 4a), and the mean value of AAEBrC for the same periods was equal to
3.78 (Figure 4d). Both AAE7λ and AAEBrC increased when the air was affected by Camp
Fire smoke (Figure 4b–c,e–f). The AAEBrC was slightly (statistically significant) higher
in Fire Phase II compared to Fire Phase I—the mean AAEBrC increased from 5.63 to 5.90
with a p-value of 0.01 for Mood’s median test (Figure 4e,f). The opposite pattern was
observed for AAE7λ—it decreased in Fire Phase II (Figure 4b,c) due to the higher fraction
of light absorption by BC in Fire Phase II (Figure 3f,g). The decrease in AAE7λ during the
later wildfire stage is consistent with other wildfire studies of aged plumes in Northern
America [38,39].
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typical distributions before/after the Camp Fire event from (a,d). The vertical black lines represent
mean values; the value of the standard deviation for each distribution is also added to the plots.

4. Conclusions

Wildfires are an uncontrollable source of carbonaceous aerosols. Wildfire smoke can
cause high levels of PM2.5 in urban areas, exceeding the WHO guidelines for several days.
Exposure to such high levels of PM2.5 can adversely affect respiratory health, especially
for vulnerable groups such as children, the elderly, and people with chronic respiratory
diseases. Different, non-typical measures must be applied to reduce the health risks of the
population, such as closing schools and other public objects. People are usually advised
to spend most of their time indoors and reduce the natural ventilation of the buildings
they occupy. Real-time and highly time-resolved measurements are required to make
appropriate decisions about the measures and risks.

In our study, the CASS, a combined unit of a TCA and an Aethalometer, was used
to measure the influence of the smoke from the distant Camp Fire on local air quality in
Berkeley. High-time-resolution measurements, in combination with numerical models
such as the BC tracer and BrC model, allow us to apportion the pollution in real-time. The
24 h average TC concentration exceeded the recommended WHO PM2.5 limit every day
when the Berkeley site was affected by the wildfire smoke from Camp Fire, and the 24 h
average concentrations were two times higher than the limit in 7 of these 13 days. Median
BC concentrations increased approximately four times above the pollution level typical
for Berkeley. The median OC increased by 8.4 in the first, more active fire phase when
flaming is expected to dominate. Later, when more smoldering is expected, the median OC
increase was even higher, 13.9 times above the background concentrations, suggesting a
more intense formation of SOA during the later fire phase.

The results of apportionment models that can be run in real-time can be an essential
input for short-term air quality prediction models. On the other hand, we showed an
increased contribution of BrC to total light absorption at short wavelengths during the
event. Therefore, the fraction of the absorbed light by BrC can be used as a marker
for detecting the influence of wildfire plumes. While the fractional contribution of BrC
to light absorption before and after the wildfire event was low (approximately 5%), it
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increased up to 50% during the event. Considering that the magnitude and variability of
BrC absorption are still uncertain and poorly represented in climate models, we believe
the multiwavelength measurements of aerosol optical properties can help improve the
parameterization of BrC absorption in climate models.
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Appendix A

Figure A1 contains the results of the BC tracer model. The minimum R-squared
method is used to estimate the optimal (OC/BC)prim ratio [25,26].
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A significant shift to higher OC/BC ratios can be observed when the air quality was 
strongly influenced by the smoke from Camp Fire in Figure A1. Before and after the Camp 
Fire event (Figure A1a), 75% of all OC/BC ratios were lower than 4.1, with a median value 
of 2.9, and 75% of all OC/BC ratios were higher than 4.4 during the Camp Fire event (Fig-
ure A1b), with a median value of 5.5. Lower OC/BC (OC/EC) ratios are typical for traffic 

Figure A1. BC tracer model before/after Camp Fire event (a) and when the air was affected by
Camp Fire smoke (b). OC/BC probability distribution is presented with blue and cumulative OC/BC
distribution with a green line. The orange curve shows the R2 score between the hypothetical SOC
and BC for different hypothetical (OC/BC)prim ratios. The vertical dashed orange line marks the
minimum of the R2 function (optimal value). The optimal value is also written in the title with the
calculated percentile in brackets.

A significant shift to higher OC/BC ratios can be observed when the air quality
was strongly influenced by the smoke from Camp Fire in Figure A1. Before and after
the Camp Fire event (Figure A1a), 75% of all OC/BC ratios were lower than 4.1, with a
median value of 2.9, and 75% of all OC/BC ratios were higher than 4.4 during the Camp
Fire event (Figure A1b), with a median value of 5.5. Lower OC/BC (OC/EC) ratios are
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typical for traffic sites. For example, Zhou et al. [40] collected typical OC/EC ratios for
tunnel experiments between 0.3 and 1.6. Higher OC/EC ratios from biomass burning
are expected—for example, in work by Tian et al. [41], the OC/EC ratios from different
biomass-burning experiments were between 2.4 and 9.1.

Figure A2 contains typical diurnal profiles of BC, SOC, POC, and bBrC
abs , averaged for

periods before and after the Camp Fire event.
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Figure A2. Diurnal profiles of BC (a), SOC (b), POC (c), and bBrC
abs (d) for typical November conditions

in Berkeley before and after the Camp Fire event. The line represents the median value and the
shaded area concentrations between the first and third quartiles.

Figures A3–A17 contain the spatial distribution of the smoke from the Camp Fire in
Northern California. The data from four publicly available datasets are joined in these
figures: Satellite images by NASA Worldview [32] and back trajectories by the HYSPLIT
model [33] on the left, and Smoke maps by NOAA Hazard Mapping System [34] and daily
averaged PM2.5 concentrations measured by Purple Air sensors [35] on the right.
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Figure A3. The spatial distribution of the smoke from the Camp Fire in Northern California on
7 November 2018. The satellite images by NASA Worldview [32] and back trajectories by the HYS-
PLIT model [33] are on the left, and Smoke maps by NOAA Hazard Mapping System [34] and daily
averaged PM2.5 concentrations measured by Purple Air sensors [35] are on the right.
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Figure A5. The spatial distribution of the smoke from the Camp Fire in Northern California on 9 
November 2018. The satellite images by NASA Worldview [32] and back trajectories by the 
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daily averaged PM2.5 concentrations measured by Purple Air sensors [35] are on the right. 

Figure A4. The spatial distribution of the smoke from the Camp Fire in Northern California on
8 November 2018. The satellite images by NASA Worldview [32] and back trajectories by the HYS-
PLIT model [33] are on the left, and Smoke maps by NOAA Hazard Mapping System [34] and daily
averaged PM2.5 concentrations measured by Purple Air sensors [35] are on the right.
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Figure A5. The spatial distribution of the smoke from the Camp Fire in Northern California on 9 
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Figure A5. The spatial distribution of the smoke from the Camp Fire in Northern California on
9 November 2018. The satellite images by NASA Worldview [32] and back trajectories by the HYS-
PLIT model [33] are on the left, and Smoke maps by NOAA Hazard Mapping System [34] and daily
averaged PM2.5 concentrations measured by Purple Air sensors [35] are on the right.
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Figure A6. The spatial distribution of the smoke from the Camp Fire in Northern California on
10 November 2018. The satellite images by NASA Worldview [32] and back trajectories by the
HYSPLIT model [33] are on the left, and Smoke maps by NOAA Hazard Mapping System [34] and
daily averaged PM2.5 concentrations measured by Purple Air sensors [35] are on the right.
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Figure A7. The spatial distribution of the smoke from the Camp Fire in Northern California on
11 November 2018. The satellite images by NASA Worldview [32] and back trajectories by the
HYSPLIT model [33] are on the left, and Smoke maps by NOAA Hazard Mapping System [34] and
daily averaged PM2.5 concentrations measured by Purple Air sensors [35] are on the right.
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Figure A8. The spatial distribution of the smoke from the Camp Fire in Northern California on
12 November 2018. The satellite images by NASA Worldview [32] and back trajectories by the
HYSPLIT model [33] are on the left, and Smoke maps by NOAA Hazard Mapping System [34] and
daily averaged PM2.5 concentrations measured by Purple Air sensors [35] are on the right.
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Figure A9. The spatial distribution of the smoke from the Camp Fire in Northern California on
13 November 2018. The satellite images by NASA Worldview [32] and back trajectories by the
HYSPLIT model [33] are on the left, and Smoke maps by NOAA Hazard Mapping System [34] and
daily averaged PM2.5 concentrations measured by Purple Air sensors [35] are on the right.
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November 2018. The satellite images by NASA Worldview [32] and back trajectories by the 
HYSPLIT model [33] are on the left, and Smoke maps by NOAA Hazard Mapping System [34] and 
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Figure A11. The spatial distribution of the smoke from the Camp Fire in Northern California on 15 
November 2018. The satellite images by NASA Worldview [32] and back trajectories by the 
HYSPLIT model [33] are on the left, and Smoke maps by NOAA Hazard Mapping System [34] and 
daily averaged PM2.5 concentrations measured by Purple Air sensors [35] are on the right. 

Figure A10. The spatial distribution of the smoke from the Camp Fire in Northern California on
14 November 2018. The satellite images by NASA Worldview [32] and back trajectories by the
HYSPLIT model [33] are on the left, and Smoke maps by NOAA Hazard Mapping System [34] and
daily averaged PM2.5 concentrations measured by Purple Air sensors [35] are on the right.
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Figure A11. The spatial distribution of the smoke from the Camp Fire in Northern California on
15 November 2018. The satellite images by NASA Worldview [32] and back trajectories by the
HYSPLIT model [33] are on the left, and Smoke maps by NOAA Hazard Mapping System [34] and
daily averaged PM2.5 concentrations measured by Purple Air sensors [35] are on the right.
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Figure A12. The spatial distribution of the smoke from the Camp Fire in Northern California on 16 
November 2018. The satellite images by NASA Worldview [32] and back trajectories by the 
HYSPLIT model [33] are on the left, and Smoke maps by NOAA Hazard Mapping System [34] and 
daily averaged PM2.5 concentrations measured by Purple Air sensors [35] are on the right. 

 
Figure A13. The spatial distribution of the smoke from the Camp Fire in Northern California on 17 
November 2018. The satellite images by NASA Worldview [32] and back trajectories by the 
HYSPLIT model [33] are on the left, and Smoke maps by NOAA Hazard Mapping System [34] and 
daily averaged PM2.5 concentrations measured by Purple Air sensors [35] are on the right. 

Figure A12. The spatial distribution of the smoke from the Camp Fire in Northern California on
16 November 2018. The satellite images by NASA Worldview [32] and back trajectories by the
HYSPLIT model [33] are on the left, and Smoke maps by NOAA Hazard Mapping System [34] and
daily averaged PM2.5 concentrations measured by Purple Air sensors [35] are on the right.
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Figure A13. The spatial distribution of the smoke from the Camp Fire in Northern California on
17 November 2018. The satellite images by NASA Worldview [32] and back trajectories by the
HYSPLIT model [33] are on the left, and Smoke maps by NOAA Hazard Mapping System [34] and
daily averaged PM2.5 concentrations measured by Purple Air sensors [35] are on the right.
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Figure A14. The spatial distribution of the smoke from the Camp Fire in Northern California on 18 
November 2018. The satellite images by NASA Worldview [32] and back trajectories by the 
HYSPLIT model [33] are on the left, and Smoke maps by NOAA Hazard Mapping System [34] and 
daily averaged PM2.5 concentrations measured by Purple Air sensors [35] are on the right. 

 
Figure A15. The spatial distribution of the smoke from the Camp Fire in Northern California on 19 
November 2018. The satellite images by NASA Worldview [32] and back trajectories by the 
HYSPLIT model [33] are on the left, and Smoke maps by NOAA Hazard Mapping System [34] and 
daily averaged PM2.5 concentrations measured by Purple Air sensors [35] are on the right. 

Figure A14. The spatial distribution of the smoke from the Camp Fire in Northern California on
18 November 2018. The satellite images by NASA Worldview [32] and back trajectories by the
HYSPLIT model [33] are on the left, and Smoke maps by NOAA Hazard Mapping System [34] and
daily averaged PM2.5 concentrations measured by Purple Air sensors [35] are on the right.

Toxics 2023, 11, 497 16 of 19 
 

 

 
Figure A14. The spatial distribution of the smoke from the Camp Fire in Northern California on 18 
November 2018. The satellite images by NASA Worldview [32] and back trajectories by the 
HYSPLIT model [33] are on the left, and Smoke maps by NOAA Hazard Mapping System [34] and 
daily averaged PM2.5 concentrations measured by Purple Air sensors [35] are on the right. 
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Figure A15. The spatial distribution of the smoke from the Camp Fire in Northern California on
19 November 2018. The satellite images by NASA Worldview [32] and back trajectories by the
HYSPLIT model [33] are on the left, and Smoke maps by NOAA Hazard Mapping System [34] and
daily averaged PM2.5 concentrations measured by Purple Air sensors [35] are on the right.
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Figure A16. The spatial distribution of the smoke from the Camp Fire in Northern California on 20 
November 2018. The satellite images by NASA Worldview [32] and back trajectories by the 
HYSPLIT model [33] are on the left, and Smoke maps by NOAA Hazard Mapping System [34] and 
daily averaged PM2.5 concentrations measured by Purple Air sensors [35] are on the right. 

 
Figure A17. The spatial distribution of the smoke from the Camp Fire in Northern California on 21 
November 2018. The satellite images by NASA Worldview [32] and back trajectories by the 
HYSPLIT model [33] are on the left, and Smoke maps by NOAA Hazard Mapping System [34] and 
daily averaged PM2.5 concentrations measured by Purple Air sensors [35] are on the right. 
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Figure A16. The spatial distribution of the smoke from the Camp Fire in Northern California on
20 November 2018. The satellite images by NASA Worldview [32] and back trajectories by the
HYSPLIT model [33] are on the left, and Smoke maps by NOAA Hazard Mapping System [34] and
daily averaged PM2.5 concentrations measured by Purple Air sensors [35] are on the right.
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